اثر قارچ Serendipita indica و باکتری Sinorhizobium meliloti بر رشد گیاه یونجه (Medicago sativa L.) در خاک آهکی آلوده به روی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 محقق بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان فارس; سازمان تحقیقات، آموزش و ترویج کشاورزی، شیراز، ایران

2 استادیار گروه علوم خاک، دانشکده کشاورزی، دانشگاه شیراز

3 دانشیار گروه علوم خاک، دانشکده کشاورزی، دانشگاه شیراز

چکیده

افزایش سطح آلودگی فلزات سنگین در خاک، با ورود به زنجیره غذایی انسان، به عنوان یکی از پر مخاطره‌ترین مسائل زیست‌محیطی جوامع بشری تبدیل شده است. استفاده از یک فناوری ارزان و بی‌خطر از قبیل گیاه‌پالایی و با همزیستی مناسب بین گیاه و ریزجانداران محرک رشد گیاه، می‌تواند گامی موثر بر افزایش کارایی این فناوری باشد. در مطالعه حاضر، اثرات تلقیح انفرادی و توام قارچ Serendipita indica و باکتری Sinorhizobium meliloti بر یونجه کشت شده در یک خاک آلوده به غلظت‌های مختلف روی ( 0، 400 و 800 میلی‌گرم در کیلوگرم خاک)، مورد بررسی قرار گرفت. نتایج نشان داد که، بالاترین سطح آلودگی روی، به ترتیب با کاهش شدید 53/5، 71، 25/2 و 60/2 درصدی وزن خشک اندام هوایی، ریشه، غلظت فسفر و آنزیم کاتالاز گیاهی و افزایش 174/5، 56/6، 60/2 و 36/6 درصدی مقدار پراکسیدهیدروژن، مالون‌دی‌آلدهید، آنزیم پراکسیداز و سوپراکسیددسموتاز همراه بود، تحت این شرایط، تلقیح توام قارچ و باکتری در مقایسه با سایر تیمارهای میکروبی، علاوه بر افزایش جذب فسفر گیاه، با کاهش انتقال روی از ریشه به اندام هوایی و تحریک سیستم آنزیم‌های اکسیداتیو گیاهی مانند کاتالاز، منجر به کاهش مقدار پراکسیدهیدروژن و مالون‌دی‌آلدهید شد که متعاقباً با بهبود خصوصیات رشدی گیاه همراه بود. بنابراین تلقیح توام قارچ و باکتری با کاهش بیشتر pH خاک ریزوسفری و افزایش قابلیت جذب روی و تثبیت آلودگی در ریشه‌ یونجه، می‌تواند، نقش مهمی در تعیین کمیت، کیفیت و امنیت غذایی یونجه به عهده داشته باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Serendipita indica and Sinorhizobium meliloti on alfalfa plant growth (Medicago sativa L.) in a calcareous soil contaminated with zinc

نویسندگان [English]

  • leila tabande 1
  • moghgan sepehri 2
  • mehdi zarei 3
1 بخش تحقیقات خاک و اب
2 Department of Soil Science, College of Agriculture, Shiraz University, Shiraz, Iran
3 Department of Soil Science, College of Agriculture, Shiraz University, Shiraz, Iran
چکیده [English]

Heavy metal accumulation in soils has been become one of the most dangerous environmental issues in human societies. The use of a cheap and safe technology such as phytoremediation with a proper symbiosis between plants and plant growth-promoting microorganisms, can be an effective step in phytoremediation technology. In the present study, the effects of individual and combined inoculation of Serendipita indica and Sinorhizobium meliloti on alfalfa grown in a contaminated soil with different concentrations of zinc (0, 400 and 800 mg kg−1 soil) were investigated. The results showed that the highest level of zinc contamination led to a significant decrease of 53.3%, 71%, 25.2% and 60.2 of shoot and root dry weight, Phosphorus concentration, and plant catalase enzyme respectively, it was also associated with an increase of 174.5, 56.6, 60.2 and 36.6% in the amount of hydrogen peroxide, malondialdehyde, peroxidase and superoxide desmutase enzymes. The combined inoculation of fungi and bacteria increased phosphorus absorption in the plant. In addition, this treatment reduced the transfer of zinc from the roots to the shoots and stimulated the system of plant oxidative enzymes such as catalase and reduced the amount of hydrogen peroxide and malondialdehyde, which increased the growth characteristics of the plant. Therefore, the combined inoculation of fungi and bacteria has an important role in alfalfa plant nutrition by reducing the pH of the rhizosphere soil and increasing the Zn absorption and increasing the Zn stabilization in alfalfa roots.

کلیدواژه‌ها [English]

  • Oxidative enzymes
  • Plant stabilization
  • Transfer factor
  • Malondialdehyde
  1. امامی، آ. 1375. روش­های تجزیه شیمیایی گیاه (جلد اول) نشریه شماره 982، وزارت جهاد کشاورزی، موسسه تحقیقات خاک و آب، تهران، ایران.
  2. علی احیایی، م. و بهبهانی­زاده، ع. آ. 1372. روش­های تجزیه شیمیایی خاک وآب (جلد اول) نشریه شماره893، وزارت جهاد کشاورزی، موسسه تحقیقات خاک و آب، تهران، ایران.
  3. Ajina, T. Sallem, A. Haouas, Z. and Mehdi, M. 2017. Total antioxidant status and lipid peroxidation with and without in vitro zinc supplementation in infertile men. Andrologia 49(7): e12703.‏
  4. Arriagada, C.A. Herrera, M.A. and Ocampo, J.A. 2005. Contribution of arbuscular mycorrhizal and saprobe fungi to the tolerance of Eucalyptus globulus to Pb. Water Air Soil Pollution 166:31-47.
  5. Bandyopadhyay, S. Plascencia-Villa, G. Mukherjee, A. Rico, C.M. José-Yacamán, M. Peralta-Videa, J.R. and Gardea-Torresdey, J.L. 2015. Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. Science of the Total Environment 515: 60-69.
  6. Beauchamp, C. and Fridovich, I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical biochemistry 44(1): 276-287.‏
  7. Bhagwat, D.A. Killedar, S.G. and Adnaik, R.S. 2008. Anti-diabetic activity of leaf extract of Tridax procumbens. International Journal of Green Pharmacy 2(2).‏
  8. Chakmak, I. 2000. Possible roles of zinc in protecting plant cells from damage by reactive oxygen. New Phytologist 146: 185-205.‏
  9. Chance, B. and Maehly, A. C. 1955. [136] Assay of catalases and peroxidases.‏ Methods in enzymology 2: 764-775.
  10. Dary, M. Chamber-Pérez, M.A. Palomares, A. J. and Pajuelo, E. 2010. “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. Journal of Hazardous Materials 177(1-3): 323-330.‏
  11. Dickson, S. and Smith S.E .1998. Evaluation of vesicular-arbuscular mycorrhizal colonisation by staining. P. 77-83. In: Varma A (ed) Mycorrhiza manual, Springer-Verlag, Berlin. ‏
  12. Fagorzi, C., Checcucci, A., DiCenzo, G. C., Debiec-Andrzejewska, K., Dziewit, L., Pini, F., & Mengoni, A. (2018). Harnessing rhizobia to improve heavy-metal phytoremediation by legumes. Genes, 9(11), 542.‏
  13. Farzaneh, M. Wichmann, S. Vierheilig, H. and Kaul, H.P. 2009. The effects of arbuscular mycorrhiza and nitrogen nutrition on growth of chickpea and barley. Pflanzenbauwissenschaften 13: 15–22.
  14. Foyer, C.H. and Noctor, G. 2005. Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environment 28:1056-1071.
  15. Glick, B.R. 2010. Using soil bacteria to facilitate phytoremediation. Biotechnology Advances 28:367-374.
  16. Gratao, P. Polle, A. Lea, P. Azevedo, R. 2005. Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481-494.
  17. Hao, X. Taghavi, S. Xie, P. Orbach, M. J. Alwathnani, H. A. Rensing, C. and Wei, G. 2014. Phytoremediation of heavy and transition metals aided by legume-rhizobia symbiosis. International Journal of Phytoremediation 16(2):179-202.‏
  18. Hao, X. Xie, P. Johnstone, L. Miller, S. J. Rensing, C. and Wei, G. 2012. Genome sequence and mutational analysis of plant-growth-promoting bacterium Agrobacterium tumefaciens CCNWGS0286 isolated from a zinc-lead mine tailing. Applied and Environmental Microbiology 78(15):5384-5394.‏
  19. Hashem, A. Abd_Allah, E.F. Alqarawi, A.A. Al Huqail, A.A. Egamberdieva, D. and Wirth, S. 2016. Alleviation of cadmium stress in Solanum lycopersicum L. by arbuscular mycorrhizal fungi via induction of acquired systemic tolerance. Saudi journal of Biological Sciences 23(2):272-281.‏
  20. Heath, R.L. and Packer, L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of biochemistry and biophysics 125(1):189-198.‏
  21. Hinsinger, P. Plassard, C. Tang, C. and Jaillard, B. 2003. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant and Soil 248(1):43-59.‏
  22. Kanwal, S. Bano, A. and Malik, R. N. 2016. Role of arbuscular mycorrhizal fungi in phytoremediation of heavy metals and effects on growth and biochemical activities of wheat (Triticum aestivum L.) plants in Zn contaminated soils. African Journal of Biotechnology 15(20):872-883.
  23. Khatabi, B. Molitor, A. Lindermayr, C. Pfiffi, S. Durner, J. Von Wettstein, D. ... and Schäfer, P. 2012. Ethylene supports colonization of plant roots by the mutualistic fungus Piriformospora indica. PLoS One 7(4):e35502.‏
  24. Kidd, P.S. Alvarez-Lopez, V. Becerra-Castro, C. Cabello-Conejo, M. and Prieto-Fernandez, A. 2017. Potential role of plant-associated bacteria in plant metal uptake and implications in phytotechnologies. p. 87-126. In: Advances in botanical research, Academic Press.‏
  25. Liu, Y.A.N.G. Jin-Li, C.A.O. Zou, Y.N. Qiang-Sheng, W.U. and Kamil, K.U.Č.A. 2020. Piriformospora indica: a root endophytic fungus and its roles in plants. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 48(1): 1-13.‏
  26. Motaghian, H.R. and Hosseinpur, A.R. 2013. Zinc desorption kinetics in wheat (Triticum Aestivum L.) rhizosphere in some sewage sludge amended soils. Journal of soil science and plant nutrition 13(3):664-678.‏
  27. Ozden, M. Demirel, U. and Kahraman, A. 2009. Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Scientia Horticulturae 119(2):163-168.
  28. Pandey, N. Pathak, G. C. Pandey, D. K. and Pandey, R. 2009. Heavy metals, Co, Ni, Cu, Zn and Cd, produce oxidative damage and evoke differential antioxidant responses in spinach. Brazilian Journal of Plant Physiology 21(2):103-111.‏
  29. Peralta-Videa, J.R. De la Rosa, G. Gonzalez, J H. and Gardea-Torresdey, J.L. 2004. Effects of the growth stage on the heavy metal tolerance of alfalfa plants. Advances in Environmental Research 8(3-4):679-685.‏
  30. Peškan‐Berghöfer, T. Shahollari, B. Giong, P.H. Hehl, S. Markert, C. Blanke, V. ... and Oelmüller, R. 2004. Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant–microbe interactions and involves early plant protein modifications in the endoplasmic reticulum and at the plasma membrane. Physiologia Plantarum 122(4):465-477.‏
  31. Saleem, M. Meckes, N. Pervaiz, Z. H. and Traw, M.B. 2017. Microbial interactions in the phyllosphere increase plant performance under herbivore biotic stress. Frontiers in microbiology 8: 41.‏
  32. Sepehri, M. and Khatabi, B. 2020. Combination of Siderophore-Producing Bacteria and Piriformospora indica Provides an Efficient Approach to Improve Cadmium Tolerance in Alfalfa. Microbial Ecology 1-14.‏
  33. Shah, V. and Belozerova, I. 2009. Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water, Air, and Soil Pollution 197(1-4):143-148.‏
  34. Smith, S.E. and Read, D.J. 1997. Mycorrhizal Simbiosis. Academic Press, London
  35. Strehmel, N. Mönchgesang, S. Herklotz, S. Krüger, S. Ziegler, J. and Scheel, D. 2016. Piriformospora indica stimulates root metabolism of Arabidopsis thaliana. International Journal of Molecular Sciences 17(7):1091.‏
  36. Tang, Y.T. Qiu, R.L. Zeng, X.W. Ying, R.R. Yu, F.M. and Zhou, X.Y. 2009. Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch. Environmental and Experimental Botany 66(1):126-134.‏
  37. Undersander, D. and Cosgrove, D. 2011. Alfalfa management guide. American Society of Agronomy Crop Science Society of America Soil Science Society of America.
  38. Varma, A. Bakshi, M. Lou, B. Hartmann, A. and Oelmueller, R. 2012. Piriformospora indica: a novel plant growth-promoting mycorrhizal fungus. Agricultural Research 1(2):117-131.‏
  39. Wang, C. Zhang, S.H. Wang, P.F. Hou, J. Zhang, W.J. Li, W. and Lin, Z.P. 2009. The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings. Chemosphere 75(11):1468-1476.‏
  40. Weiss, M. Selosse, M.A. Rexer, K.H. Urban, A. and Oberwinkler, F. 2004. Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycological Research 108(9):1003-1010.‏
  41. Yadav, V. Kumar, M. Deep, D.K. Kumar, H. Sharma, R. Tripathi, T. and Johri, A.K. 2010. A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant. Journal of Biological Chemistry 285(34):26532-26544.‏
  42. Youssef, R.A. and Chino, M. 1989. Root-induced changes in the rhizosphere of plants. II. Distribution of heavy metals across the rhizosphere in soils. Soil Science and Plant Nutrition 35(4):609-621.‏
  43. Zarea, M. J. Chordia, P. and Varma, A. 2013. Piriformospora indica versus salt stress. p. 263-281. In Piriformospora indica. Springer, Berlin, Heidelberg.‏
  44. Zuccaro, A. Basiewicz, M. Zurawska, M. Biedenkopf, D. and Kogel, K.H. 2009. Karyotype analysis, genome organization, and stable genetic transformation of the root colonizing fungus Piriformospora indica. Fungal Genetics and Biology 46(8):543-550.‏