ارزیابی ترکیبات لیگنوسلولزی، ویژگی‌های کمپوست و خاک پوششی تلقیح شده با باکتری‌ها بر رشد و تولید قارچ خوراکی (Agaricus bisporus)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهرکرد. شهرکرد

2 دانشجوی سابق کارشناسی ارشد، گروه علوم و مهندسی خاک، دانشگاه شهرکرد، شهرکرد، ایران

چکیده

به منظور ارزیابی ویژگی­های کمپوست و خاکی پوششی تلقیح شده با باکتری­ها بر رشد و عملکرد قارچ خوراکی، آزمایشی بصورت بلوک کامل تصادفی با سه تکرار در سال 1400 در شرکت قارچ نگین فصل شهرکرد اجرا شد. تیمارها باکتری­های تلقیح شده به خاک پوششی شامل (ازتوباکتر کروکوکوم، سودوموناس پوتیدا، آزوسپیریلوم لیپوفروم، باسیلوس سابتیلیس، انتروباکتر کلوآسه و سیانوباکترها) و شاهد بودند. خصوصیات شیمیایی و زیستی کمپوست در طی مراحل مختلف کمپوست­سازی شامل تنفس میکروبی، جمعیت میکروبی، کربن آلی، کربن آلی محلول در آب سرد و داغ، خاکستر، میزان ترکیبات لیگنوسلولزی، اسیدیته و هدایت الکتریکی و شاخص­های رشد قارچ شامل وزن قارچ، عملکرد، راندمان بیولوژیکی و نرخ تولید اندازه­گیری شد. نتایج این مطالعه نشان داد که خصوصیات شیمیایی و زیستی کمپوست طی فرآیند کمپوست­سازی تغییر نموده که بیشترین فعالیت میکروبی یا تنفس میکروبی (پایه 145/9 و برانگیخته 176/9 میکروگرم CO2 بر گرم کمپوست در ساعت) در نمونه­های برداشت شده در شروع فاز II کمپوست­سازی اتفاق افتاد که در این مرحله بیشترین جمعیت باکتریایی (CFU.g-1 109× 1/25) هم بدست آمده است. جمعیت باکتریایی در خاک پوششی کمتر از کمپوست بود. میزان همی­سلولز دامنه­ای بین 22/6 الی 45/1 درصد را نشان داد و مقدار سلولز دامنه­ای از 16/7 الی 42/2 درصد داشته و مقدار لیگنین هم دامنه­ای از 17/7 الی 33/7 درصد حاصل گردید. افزودن باکتری­ها به خاک پوششی تاثیر مثبت خود را بر عملکرد (15/9 درصد) و میانگین وزن هر قارچ (18/0 درصد) نسبت به شاهد (تفاوت معنی­داری در سطح احتمال 5 درصد) نشان داد. در بین باکتری­های استفاده شده، باکتری­های ازتوباکتر کروکوکوم و سودوموناس پوتیدا تاثیر بیشتری نسبت به بقیه باکتری­ها بر صفات عملکردی قارچ نشان دادند. بنابراین، تحقیقات بیشتر برای تعیین راهبردهایی برای افزایش عملکرد و کیفیت صفات زراعی در کشت تجاری قارچ خوراکی مورد نیاز است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of lignocellulosic compounds, compost traits and casing soil inoculated with bacteria on the growth and production of edible mushrooms (Agaricus bisporus)

نویسندگان [English]

  • Saheb Soodaee Mashaee 1
  • Elnaz Mirzakhani 2
1 Asist. Prof., Soil science Dept., Faculty of Agriculture, Shahrekord University, Shahrekord.
2 Former MSc. Student of Soil Science and engineering Department, Faculty of Agricultural, Shahrekord University
چکیده [English]

In order to evaluate the compost traits and casing soil inoculated with bacteria on the mushroom growth and yield, a study was conducted as randomized complete block experiment with three replications during 1400 year in Mushroom Company of Nagin Fasle Shahrekord. The treatments included bacteria inoculated into the casing soil (Azotobacter chroococcum, Pseudomonas putida, Azospirillum lipoferum, Bacillus subtilis, Enterobacter cloacae and cyanobacteria) and controls. Chemical and biological properties of compost during different stages of composting including microbial respiration, microbial population, organic carbon, dissolved organic carbon in cold and hot water, ash, amount of lignocellulose compounds, acidity and electrical conductivity and mushroom growth indicators were measured including mushroom weight, yield, biological efficiency and production rate. Results of this study indicated that the chemical and biological properties of compost changed during the composting process. The highest microbial activity was observed at beginning of phase II, and also the highest bacterial population (1.25 × 109 CFU.g-1) was found. Bacterial population in casing soil was lower than compost. The amount of hemicellulose ranged from 22.6 to 45.1 percent, and the amount of cellulose ranged from 16.7 to 42.2 percent, and the amount of lignin ranged from 17.7 to 33.7 percent. Bacteria inoculation to the casing soil showed a positive effect on the yield (15.9%) and the average weight of mushroom (18.0%) compared to the control (p≤0.05). Among the bacteria used, Azotobacter crococcum and Pseudomonas putida showed a better effect on the functional characteristics of the mushroom than the other bacteria. Therefore, more research is needed to determine strategies to increase the yield and quality of agricultural traits in the commercial cultivation of edible mushrooms.

کلیدواژه‌ها [English]

  • edible mushroom yield
  • lignin
  • microbial population
  • organic carbon and Pseudomonas putida
  1. پاکدین، ع.، فارسی، م.، مرعشی، ح.، ملک­زاده، خ. و جلال­زاده، ب. 1388. شناسایی اکتینومیست­های کمپوست قارچ خوراکی دکمه­ای با استفاده از ژن 16s RNA. ششمین کنگره علوم باغبانی، 22- 25 تیرماه. دانشگاه گیلان.
  2. داوری، م.، شهریار، ا.، بهنامیان، م.، دژستان، س. و علی­حسین زاده، ف. 1397. شناسایی قارچهای بیماری زای متداول در مراکز پرورش قارچ دکمه ای سفید استان اردبیل با روش های ریخت شناسی و مولکولی. پژوهش های کاربردی در گیاه پزشکی، 7 (1): 122-109.
  3. سودائی مشایی، ص. و بنی­طالبی، گ. 1400. فناوری استفاده از کاه گندم در فرآیند کمپوست­سازی برای تولید قارچ خوراکی (Agaricus bisporus)، هفدهمین کنگره ملی و سومین کنگره بین‌المللی علوم زراعت و اصلاح نباتات ایران، دانشگاه شهید باهنر کرمان، 5-7 بهمن ماه 1400.
  4. شمسی، ب.، محمدی، ح.ر. و صداقت، ا. 1392. پرورش علمی و عملی قارچ دکمه­ای (چاپ دوم). انتشارات آییژ. تهران ایران، ص. 165.
  5. لطفی، م.، فارسی، م.، میرشمسی کاخکی، ا. و جانپور، ج. 1397. بررسی تاثیر جدایه باکتری Pseudomonas putida بر عملکرد قارچ خوراکی دکمه­ای سفید (Agaricus bisporus). نشریه علوم باغبانی، 32 (2): 286-273.

 

  1. Anderson, T.H. and Domsch, K.H. 1990. Application of eco-physiological quotient (qCO2 and Dq) on microbial biomasses from soils of different cropping histories. Soil Biology and Biochemistry, 22, 251–255.
  2. Baars, J.J.P., Scholtmeijer, K., Sonnenberg, A.S.M. and Van Peer, A. 2020. Critical factors involved in primordia building in Agaricus bisporus: A review. Molecules, 25, 2984.
  3. Bellettini, M.B.; Fiorda, F.A.; Maieves, H.A.; Teixeira, G.L.; Ávila, S.; Hornung, P.S. and Ribani, R.H. 2019. Factors affecting mushroom Pleurotus spp. Saudi Journal of Biological Sciences, 26, 633–646.
  4. Bellettini, M.B., Fiorda, F.A., Maieves, H.A., Teixeira, G.L., Ávila, S., Hornung, P.S. and Ribani, R.H. 2019. Factors affecting mushroom Pleurotus spp. Saudi Journal of Biological Sciences, 26: 633–646.
  5. Breccia, J.D., Bettucci, L., Piaggio, M., and Sireeizi, F. 1997. Degradation of sugar cane bagasse by several white-rot fungi. Acta Biotechnologica, 17(2): 177-184.
  6. Carrasco, J., Zied, D.C., Pardo, J.E., Preston, G.M. and Pardo-Giménez, A. 2018. Supplementation in mushroom crops and its impact on yield and quality. AMB Express, 8, e146.
  7. Carrasco, J. and Preston, G.M. 2020. Growing edible mushrooms: A conversation between bacteria and fungi. Environmental Microbiology, 22, 858–872.
  8. Carrasco, J., Tello, M.L., Toro, M., Tkacz, A., Poole, P., Pérez-Clavijo, M. and Preston, G. 2019. Casing microbiome dynamics during button mushroom cultivation: Implications for dry and wet bubble diseases. Microbiology, 165, 611–624.
  9. Corre, M.D., Schnabel, R.R. and Shaffer, J.A. 1999. Evaluation of soil organic carbon under forests, cool-season and warm-season grasses in the northeastern US. Soil Biology and Biochemistry, 31(11), 1531-1539.
  10. Duran, K., den Dikkenberga, M., Erven, G., Baars, J.J.P., Comans, R.N.J., Kuyper, T.W. and Kabel, T.W. 2022. Microbial lignin degradation in an industrial composting environment. Bioresource Technology Reportsm, vol. 17. https://doi.org/10.1016/j.biteb.2021.100911.
  11. Iossi, M.R., Palú, I.A., Soares, D.M., Vieira, W.G., Alves, L.S., Stevani, C.V., Caitano, C.E.C., Atum, S.V.F., Freire, R.S., Dias, E.S. and Zied, D.C. 2022. Metaprofiling of the Bacterial Community in Colonized Compost Extracts by Agaricus subrufescens. Journal of Fungi, 8, 995. https://doi.org/10.3390/jof8100995.
  12. Kertesz, M.A. and Thai, M. 2018. Compost bacteria and fungi that influence growth and development of Agaricus bisporus and other commercial mushrooms. Applied Microbiology and Biotechnology. 102:1639-1650. DOI 10.1007/s00253-018-8777-z.
  13. Lin, L., Yan, R., Liu, Y. and Jiang, W. 2010. In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: cellulose, hemicellulose, and lignin. Bioresource Technology, 101(21): 8217-8223.
  14. Lorch, H.J., Benckieser, G. and Ottow, J.C.G. 1995. Basic methods for counting microorganism in soil and water. In: Alef K. and Nannipieri P. (Eds). Methods in Applied Soil Microbiology and Biochemistry. Academic Press. pp. 146–161.
  15. Lu, W., Yu, S., Ma, Y. and Huang, H. 2018. Integrated economic and environmental analysis of agricultural straw reuse in edible fungi industry. PeerJ, 6: e4624 DOI 10.7717/peerj.4624.
  16. Martins, L.F., Antunes, L.P., Pascon, R.C., de Oliveira, J.C.F., Digiampietri, L.A., Barbosa, D., Peixoto, B.M., Vallim, M.A., Viana-Niero, C. and Ostroski, E.H. 2013. Metagenomic analysis of a tropical composting operation at the Sao Paulo Zoo Park reveals diversity of biomass degradation functions and organisms. PLoS ONE, 8, e61928.
  17. McGee, CF, Byrne, H, Irvine, A and Wilson, J. 2017. Diversity and dynamics of the DNA and cDNA-derived compost fungal communities throughout the commercial cultivation process for Agaricus bisporus. Mycologia. 109:475–484. DOI 10.1080/00275514.2017.1349498.
  18. McGee, CF. 2018. Microbial ecology of the Agaricus bisporus mushroom cropping process. Appllied and Microbiology and Biotechnology 102(3):1075-1083.
  19. Nelson, D.W. and Sommers, L.E. 1982. Total Carbon, Organic Carbon and Organic Matter. Methods of Soil Aanalysis. Part 2. Chemical and Microbiological Properties. 9, 539–577.
  20. Reddy, M.S. and Patrick, Z.A. 1990. Effect of bacteria associated with mushroom compost and casing materials on basidiomata formation in Agaricus bisporus. Canadian Journal of plant pathology, 12:236-242.
  21. Shahryari, Z., Fazaelipoor, M.H., Setoodeh, P., Nair, R.B., Taherzadeh, M.J. and Ghasemi, Y. 2018. Utilization of wheat straw for fungal phytase production. International Journal of Re-cycling of Organic Waste in Agriculture 7:345_355 DOI 10.1007/s40093-018-0220-z.
  22. Sharma, H.S.S. 1995. Thermogravimetric analysis of mushroom (Agaricus bisporus) compost for fiber components. In Science and cultivation of edible fungi, Vol. 1. Edited by T. Elliott. Balkema, Rotterdam. pp. 267–273.
  23. Sharma, H.S.S., Kilpatrick, M., Lyons, G., Murray, J., Moore, S., Cheung, L., Finnegan, K., Sturgeon, S. and Mellon, R. 2004. Changes in the quality of mushroom compost during the last decade. In P. Romaine, C. B. Keil, D. L. Rinker and D. J. Royse (Eds.), Science and Cultivation of Edible and Medicinal Fungi, 229-239, Pennsylvania: Pennsylvania State University.
  24. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter J., and Templeton, D. 2008. Determination of structural carbohydrates and lignin in biomass: laboratory analytical procedure (LAP). Golden, CO: National Renewable Energy Laboratory; April. NREL Report No.: TP-510-42618. Contract No.: DE-AC36-99-G010337. Sponsored by the U.S. Department of Energy.
  25. Smil, V. 1999. Crop residues: agriculture’s largest harvest: crop residues incorporate more than half of the world’s agricultural phytomass. Bioscience 49:299–308. DOI 10.2307/1313613.
  26. Song, T., Shen, Y., Jin, Q., Feng, W., Fan, L., Cao, G., and Cai, W. 2021. Bacterial community diversity, lignocellulose components, and histological changes in composting using agricultural straws for Agaricus bisporus production. PeerJ, 9, https://doi.org/10.7717/peerj.10452.
  27. Sparling, G.P., Fermor, T.R. and Wood, D.A. 1982. Measurement of the microbial biomass in composted wheat straw, and the possible contribution of the biomass to the nutrition of Agaricus bisporus. Soil Biology & Biochemistry. 14:609-661. DOI 10.1016/0038-0717(82)90096-7.
  28. Straatsma, G., Olijnsma, T.W., Gerrits, J.P.G. and VanGriensven, L.J.L.D. 1995. Inoculation of indoor phase I compost with thermophiles. In: Elliott TJ, ed. Mushroom Science; Science and cultivation of edible fungi. Rotterdam: A. A. Balkema, 283–288.
  29. Suarez, C., Ratering, S., Weigel, V., Sacharow, J., Bienhaus, J., Ebert, J., Hirza, A., Rüh, M. and Schnell, S. 2020. Isolation of bacteria at different points of Pleurotus ostreatus cultivation and their influence in mycelial growth. Microbiological Research, 234, 126393.
  30. Sun, S., Li, F., Xu, X., Liu, Y., Kong, X., Chen, J., Liu, T. and Chen, L. 2020. Study on the community structure and function of symbiotic bacteria from different growth and developmental stages of Hypsizygus marmoreus. BMC Microbiology. 20(1): 311. doi: 10.1186/s12866-020-01998-y.
  31. Vijay, B., Nitika, S. Shwet, K. 2012. Cellulase production by Scytalidium thermophilum and its potential use in rapid composting for Agaricus bisporus. Mushroom Research, 21(1):83-86.
  32. Zarenejad, F., Yakhchali, B. and Rasooli, I. 2012. Evaluation of indigenous potent mushroom growth promoting bacteria (MGPB) on Agaricus bisporus production. World Journal of Microbiology and Biotechnology, 28(1): 99- 104.
  33. Zhan, J., Li, T., Zhang, X., Yu, H. and Zhao, L. 2018. Rhizosphere characteristics of phytostabilizer Athyrium wardii (Hook.) involved in Cd and Pb accumulation. Ecotoxicology and Environmental Safety, 148, 892-900.
  34. Zhang, H.L., Wei, J.K., Wang, Q.H., Yang, R., Gao, X.J., Sang, Y.X., Cai, P.P., Zhang, G.Q. and Chen, Q.G. 2019. Lignocellulose utilization and bacterial communities of millet straw based mushroom (Agaricus bisporus) production. Scientific Reports, 9:1151-1162. https://doi.org/10.1038/s41598-018-37681-6.