تنوع گونه ای قارچ‌های میکوریز آربوسکولار در کاربری‌های طبیعی و زراعی و رابطه آنها با خصوصیات خاک در جنگل‌های زاگرس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 هیات علمی/ دانشگاه ایلام

2 دکتری علوم زیستی جنگل، دانشگاه ایلام

3 دانشجوی کارشناسی ارشد علوم جنگل، دانشگاه ایلام

4 دانشیار گروه علوم جنگل، دانشگاه ایلام

چکیده

این تحقیق به منظور بررسی تنوع گونه­ای قارچ­های آربوسکولار همزیست در کاربری­های جنگل طبیعی بلوط، جنگل دست­کاشت پهن­برگ، جنگل دست کاشت سوزنی­برگ، زمین زراعی و مرتع در رویشگاه لنه، شهرستان چرداول در استان ایلام انجام گرفت. بدین منظور از هر کاربری در عمق­های 5-0 و 15-5 سانتی­متری خاک به طور تصادفی پنج نمونه ترکیبی خاک برداشت شد و خصوصیات خاک و قارچ­های میکوریزی این نمونه­ها مورد بررسی قرار گرفت. جهت استخراج قارچ از روش الک مرطوب و شیب غلظت ساکاروز استفاده شد. همچنین شناسایی آنها بر اساس صفات مورفولوژیکی اسپور نظیر شکل، رنگ، اندازه، تعداد لایه دیواره، ضخامت لایه­های دیواره و شکل ریسه انجام گرفت. در مجموع 19 گونه قارچ میکوریزی متعلق به هشت جنس Glomus، Acaulospora، Claroideoglomus، Rhizophagus، Septoglomus، Dentiscutata، Paraglomus،  Entrophospora شناسایی شد. نتایج نشان داد که تنوع زیستی قارچ­های میکوریز آربوسکولار و فراوانی اسپور قارچ­ها در کاربری­های مختلف متفاوت است (p<0.05). بیشترین میانگین تراکم جمعیت اسپور به ترتیب مربوط به جنگل طبیعی (78/12)، جنگل­کاری پهن برگ (66/28) و مرتع (57/48) و کمترین آن مربوط به زمین زراعی (50/96) و جنگل­کاری سوزنی­برگ (28/16) بود. همچنین مشخص شد که غنای قارچ­های همزیست در جنگل طبیعی (16/6) و مرتع (15/8) بیشترین و در کاربری زراعی (11/6) و جنگل­کاری سوزنی برگ (14/4) کمترین بود. شاخص­های تنوع شانون­وینر و سیمپسون در کاربری­های جنگل طبیعی، مرتع و جنگل­کاری­ها به طور معنی­داری از کاربری زمین زراعی بیشتر بود. بر اساس نتایج تحقیق، اختلاف معنی­داری بین دو عمق 5-0 و 15-5 سانتی­متری در تراکم اسپور و شاخص­های تنوع گونه­ای وجود ندارد (p>0.05). نتایج این تحقیق نشان داد که تغییر کاربری جنگل بر تنوع و فراوانی قارچ­های میکوریزی همزیست تاثیر منفی دارد. بنابراین توصیه می­گردد برای حفظ این جوامع، جنگل­های طبیعی تحت حفاظت بیش­تری قرار گیرند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Biodiversity of Arbuscular Mycorrhizal Fungi in Natural and Agricultural Land and their relationship with soil properties in Zagros Forest

نویسندگان [English]

  • nahid jaafarian 2
  • monire jafari 3
  • jafar hoseinzadeh 4
2 ilam university
3 ilam university
4 ilam university
چکیده [English]

This study was carried out in order to investigate the biodiversity of arbuscular mycorrhizal fungi (AMF) in natural oak forest, broad-leaved plantation, needle-leaved plantation, agricultural and rangeland land uses in Lene habitat, Chardavol city, Ilam province. For this purpose, five mixed soil samples were randomly collected from each land use at soil depths of 0-5 and 5-15 cm and the characteristics of soil and AMF were investigated. Wet sieving and sucrose method were used to extract AMF and their identification was done based on spore morphological characteristics such as shape, color, size, number of wall layers, thickness of wall layers and hypha shape. Totally 19 AMF species belonging to eight genera including Glomus, Acaulospora, Claroideoglomus, Rhizophagus, Septoglomus, Dentiscutata, Paraglomus, Entrophospora were identified. The results showed that spores abundance and biodiversity of AMF were different in different land uses. The highest spore density was related to natural forest (78.12), broadleaf forestry (66.28) and pasture (57.48), and the lowest was related to agriculture (50.96) and needle-leaved plantation (28.16). It was also found that the abundance of symbiotic AMF was the highest in the natural forest (16.6) and rangeland (15.8) and the lowest in the agricultural (11.6) and needle-leaved plantation (14.4) land uses. Shannon-Weiner and Simpson's diversity indices in natural forest, rangeland and plantation were significantly higher than agricultural land use. According to the results, there was no significant difference between the two depths of soil samples in spore density and biodiversity indices. The results also showed that the change in land use had negative effect on the diversity and abundance of symbiotic AMF. Therefore, to preserve biodiversity of AMF, it is recommended that natural forests be under more protection.

کلیدواژه‌ها [English]

  • Needle-leafed
  • Arbuscular Mycorrhizal fungi
  • Plantation
  • Natural forest
  • Ilam
  1. Ambili, K. Thomas, G.V. Indu, P. Gopal, M. & Alka, G. 2012. Distribution of arbuscular mycorrhizae associated with coconut and arecanut based cropping systems. J Agric Res, 1(4):338–345
  2. Aminian Nesab, P. Sadaqati, E. Hosseini, S. and R Sabri. 2021. Investigating the effect of climate, physicochemical characteristics of soil and host on the activity of arbuscular mycorrhizal fungi in Rafsanjan region, Biological control of pests and plant diseases, 9 (2): 197-216.
  3. Asghari, H. R. Amerian, M. R. & Gorbani, H. 2008. Soil salinity affects arbuscular mycorrhizal colonization of halophytes. Pakistan Journal of Biology Science, 11 (15), 1909-1915.
  4. Belay, Z. Negash, M. Kaseva, J. 2020. Native forests but not agroforestry systems preserve arbuscular mycorrhizal fungal species richness in southern Ethiopia. Mycorrhiza 30, 749–759. https://doi.org/10.1007/s00572-020-00984-6.
  5. Bremner, J. M. & Mulvaney. 1982. Nitrogen total, In page, A.L. Miller, R.H. Keeney, R.R. (Eds), Methods of Soil Analysis, Part 2 Second ed. American Society of Agronomy, Madison, WI, 595-624 pp.
  6. Brundrett, M.C. 1991. Mycorrhizas in natural ecosystems. Advance ecological Research, 21:171-3130.
  7. Burni, T. Hussain, F. & Sharief, M. 2011. Arbuscular mycorrhizal fungi (AMF) associated with the rhizosphere of mentha arvensis L., and longifolia huds. Pakistan Journal of Botany, 43(6): 3013-3019.
  8. Chaudhry, M., Saeed, M. and F. Nasim. 2013. Soil chemical heterogeneity may affect the diversity of Arbuscular-Mycorrhizal Fungi in the rhizosphere of Tamarix Aphyla under arid climate, Biologie vegetală, 59(2): 53-63.
  9. Cibichakravarthy: B., Kumutha, K., Balachandar, D. 2015. Arbuscular mycorrhizal fungal diversity in phosphorus-deficient Alfisols of a dry North-western agro-ecosystem of Tamil Nadu, India. Ann Microbiol. 65:143–153
  10. Fracetto, G. G., Azevedo, L. C., Fracetto, F. J., Andreote, F. D., Lambais, M. R., & Pfenning, L. H. 2013. Impact of Amazon land use on the community of soil fungi. Scientia Agricola, 70(2), 59-67.
  11. Hale, C. M., Frelich, L. E., Reich, P. B., & Pastor, J. 2005. Effects of European earthworm invasion on soil characteristics in northern hardwood forests of Minnesota, USA. Ecosystems, 8(8), 911-927.
  12. Jafareiyan, N., Mirzaei, J., Moradi, M. and Heydari, M. 2018. Biodiversity and Colonization of Arbuscular Mycorrhizal Fungi with Some Zagros Forest Species. Journal of Forestry and Wood Products, 71 (1), 35-47.
  13. Jamiołkowska, A., Księżniak, A., Gałązka, A., Hetman, B., Kopacki, M., & Skwaryło-Bednarz, B. 2018. Impact of abiotic factors on development of the community of arbuscular mycorrhizal fungi in the soil: a Review. International agrophysics, 32(1), 133-140.
  14. Kebebew, S., Bedadi, B., Erkossa, T., Yimer, F., Wogi, L. 2022. Effect of Different Land-Use Types on Soil Properties in Cheha District, South-Central Ethiopia. Sustainability, 14, 1323.
  15. Kiers, E.T., Duhamel, M., Beesetty, Y., Mensah, J.A., Franken, O., Verbruggen, E., Fellbaum, C.R., Kowalchuk, G.A., Hart, M.M., Bago, A., Palmer, T.M., West, S.A., Vandenkoornhuyse, P., Jansa, J. and Bücking, H. 2011. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 333: 880-882.
  16. Kooch, Y., Hosseyni, S. M., Jalilvand, H., & Fallah, A. 2010. Biodiversity of environmental units in relation to soil properties in beech forest ecosystem. J. Environ. Sci, 8(1), 135-150.
  17. Lovera, M., & Cuenca, G. 2007. Diversity of arbuscular mycorrhizal fungi (AMF) and mycorrhizal potential of the soil from a natural and a disturbed savannah from la gran sabana, Venezuela. Interciencia, 32(2), 108-114.
  18. Manimegalai, V., Selvaraj, T., & Ambikapathy, V. 2011. Studies on isolation and identification of VAM fungi in Solanum viarum Dunal of medicinal plants. Advances in Applied Science Research, 2(4), 621-628.
  19. Menyailo, O. V., Hungate, B. A., & Zech, W. 2002. Tree species mediated soil chemical changes in a Siberian artificial afforestation experiment. Plant and Soil, 242(2), 171-182.
  20. Mirzaei J., & Noorbakhsh N. 2019. The relationship between soil characteristics and arbuscular mycorrhiza fungi associated with Crataegus pontica. Plant Research Journal (Iranian Biology Journal), 32(1): 237- 245
  21. Mirzaei, J. & Moradi, M. 2017. Relationships between flora biodiversity, soil physiochemical properties, and arbuscular mycorrhizal fungi (AMF) diversity in a semi-arid forest. Plant Ecology and Evolution 150 (2): 151–159
  22. Mohammadi, M., Mirzaei, J., Naji, H. R. & Moradi, M. 2017. Biodiversity and Colonization of Mycorrhizal Fungi Associated with Tamarix Trees from different Environmental Conditions. M.Sc.Thesis. Faculty of Agriculture ILAM University. 110 p.
  23. Mohammadnejad Kiasari, S., Akbarzade, M, Jafari B. 2008. Investigation on the Plant Biodiversity in the Forestation Area of Needle Leaves Species (Case study: Kohsarkande- Mazandaran). JWSS, 11 (42) :611-625
  24. Moreira, M., Baretta, D., Tsai, S. M., Gomes-da-Costa, S. M., & Cardoso, E. J. B. N. 2007. Biodiversity and distribution of arbuscular mycorrhizal fungi in Araucaria angustifolia forest. Scientia Agricola, 64(4), 393-399.
  25. Omirou, M., Ioannides, I. M., & Ehaliotis, C. 2013. Mycorrhizal inoculation affects arbuscular mycorrhizal diversity in watermelon roots, but leads to improvd colonization and plant response under water stress only. Appl. Soil Ecol. 63, 112–119.
  26. Pfenning, L.H. 2006. Soil and rhizosphere microfungi from Brazilian tropical forest ecosystems. p. 341-365. In: Hyde, K.D., ed. Biodiversity of tropical microfungi. University Press, Hong Kong, China.
  27. Prescott, C. E., & Grayston, S. J. 2013. Tree species influence on microbial communities in litter and soil: current knowledge and research needs. Forest Ecology and Management, 309, 19-27.
  28. Rajeshkumar, P.P., Thomas, G.V., Gupta, A. 2015. Diversity, richness and degree of colonization of arbuscular mycorrhizal fungi in coconut cultivated along with intercrops in high productive zone of Kerala, India. Symbiosis 65, 125–141.
  29. Requena, N., Perez‐Solis, E., Azcon‐Aguilar, C., Jeffries, P. and Barrea, J.M. 2001. Management of indigenous plant‐microbe symbioses aids restoration of decertified ecosystems. Applied Environment Microbiology, 67:495‐
  30. Salehi, A., Zarin Kafesh, M., Zahedi Amiri, AH. & Mervi the Immigrant, R. 2015. Investigation of changes in soil physical and chemical properties in relation to tree ecological groups in Nam Nam series. Nocturnal forest. Iranian Journal of Natural Resources, 58 (3): 578-567.
  31. Schüßler, A., Schwarzott, D., & Walker, C. 2001. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycological research, 105 (12), 1413-1421.
  32. Shafiee, Sh., Salehi, A., & Kohneh, E. 2020. The Influence of Forest Land Use Changing into Tea Garden on Soil Chemical Properties and Arbuscular Mycorrhizal Fungi Population (Case Study: Lahijan). Journal of Renewable Natural Resources Research, 11(2): 17-26.
  33. Sharmah, D., & Jha, K, 2014. Diversity of arbuscular mycorrhizal fungi in undisturbed forest, slash-and-burn field, and monoculture forest of Indo-Burma megadiverse region. Braz J Bot 37:339–351
  34. Singh, S. S., Tiwari, S. C., & Dkhar, M. S. 2003. Species diversity of vesicular-arbuscular mycorrhizal (VAM) fungi in jhum fallow and natural forest soils of Arunachal Pradesh, north eastern India. Tropical ecology, 44(2), 205-214.
  35. Stürmer, S. L., & Siqueira, J. O. 2011. Species richness and spore abundance of arbuscular mycorrhizal fungi across distinct land uses in Western Brazilian Amazon. Mycorrhiza, 21(4), 255-267.
  36. Talbi, Z., ASRI, A., Toati, J., CHliyeh, M., Aguil, F., Selmaoui, K., Sghir, F., Ouazzani Touhami, A., Benkirane, R. & Douira, A. 2015. Morphological characterization and diversity of endomycorrhizae in the rhizosphere of Carob tree (Ceratonia siliqua) in Morocco. Biolife, 3 (1): 196-211.
  37. Vinichuk, M., Taylor, A.F.S., Rosén, K., & Johanson, K.J. 2010. Accumulation of potassium, rubidium and caesium (133Cs and137Cs) in various fractions of soil and fungi in a Swedish forest. Science of the Total Environment, 408: 2543-8.
  38. Winkler, K., Fuchs, R., Rounsevell, Herold, M. 2021. Global land use changes are four times greater than previously estimated. Nat Commun, 12, 2501.
  39. Wehner, J., Antunes, P.M., Powell, J.R., Mazukatow, J., Rilling, M.C. 2010. Plant pathogen protection by Arbuscular mycorrhizas: A role for fungal diversity. Pedobiologia, 53: 197-201.
  40. Xu, M., Li, X., Cai, X., Li, X., Christie, P., & Zhang, J. 2017. Land use alters arbuscular mycorrhizal fungal communities and their potential role in carbon sequestration on the Tibetan Plateau. Scientific reports, 7(1), 3067.