بررسی خصوصیات محرک رشدی جدایه‌های بومیAzotobacter و تأثیر تلقیح آنها در شرایط تنش شوری بر رشد ذرت

نوع مقاله : مقاله پژوهشی

نویسنده

دانشیار پژوهش مؤسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

چکیده

بخش زیادی از خاک­های ایران دارای درجات مختلفی از شوری بوده بطوریکه تولید محصول در این شرایط تنشی دارای محدودیت زیادی است. باکتری Azotobacter می­تواند رشد گیاهان را توسط ساز و کارهای مختلف تحریک نمایند. تلقیح گیاهان با جدایه­های برتر بومی این باکتری که با مناطق شور سازگار هستند ممکن است تحمل گیاه به تنش شوری را افزایش دهد. در این مطالعه، 20 جدایه Azotobacter بومی خاک­های ایران از نظر توانایی حل­کنندگی فسفات­های نامحلول، آزادسازی پتاسیم، تولید اکسین و سیدروفور مورد بررسی قرار گرفتند. توانایی تحمل به شوری جدایه­ها در محیط کشت باکتری و در هدایت الکتریکی 10، 20، 30، 40 و 50 دسی­زیمنس بر متر بررسی شد. شش جدایه­ منتخب در سه سطح شوری در قالب آزمایش فاکتوریل بر پایه طرح بلوک کامل تصادفی و در سه تکرار بر رشد ذرت در شرایط گلخانه­ای بررسی شدند. تنش شوری از طریق آبیاری با آب دارای هدایت الکتریکی 36/0 (آب معمولی)، 3 و 6 دسی­زیمنس بر متر اعمال شد. نتایج آزمایشگاهی نشان داد که جدایه­های Az63، Az69 و Az70 مؤثرترین جدایه­ها از نظر توانایی حل­کنندگی فسفات­ها، آزادسازی پتاسیم و تولید سیدروفور بودند. همه جدایه­ها در هدایت الکتریکی 10 و بیشتر جدایه­ها در 20 دسی­زیمنس بر متر به خوبی رشد کردند و دو جدایه Az22 و Az66 دارای توانایی رشد در 50 دسی­زیمنس بر متر نیز بودند. نتایج آزمون گلخانه­ای نشان داد که تلقیح با Az69 در حالت آبیاری با آب معمولی نسبت به شاهد بدون تلقیح، وزن خشک بلال را 64 درصد افزایش داد. تلقیح اثر معنی­داری بر شاخص­های رشد ذرت در حالت آبیاری با آب دارای هدایت الکتریکی 3 و 6 دسی­زیمنس بر متر نداشت. در این پژوهش جدایه Az69 برای بررسی­های تکمیلی انتخاب شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Plant Growth-Promoting Properties of Native Azotobacter Isolates and the Effect of their Inoculation on Growth of Forage Maize under Salinity Stress

نویسنده [English]

  • Houshang Khosravi
Associate Professor, Soil and Water Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
چکیده [English]

Large areas of Iranian soils have different levels of salinity; so the crop production in those area is very limited. Azotobacter can stimulate plant growth by various mechanisms. Inoculation of plants with superior native isolates of Azotobacter that are compatible with saline areas may enhance plant growth under salinity stress. In this study, 20 isolates of Azotobacter isolated from Iranian soils were evaluated in terms of phosphate solubility, potassium releasing, auxin and siderophore production. Salinity tolerance of isolates was investigated in bacterial culture medium at electrical conductivity of 10, 20, 30, 40 and 50 dS.m-1. Six selected isolates at three levels of salinity were evaluated on maize Single Cross 704 in a factorial completely randomized block design with three replications in a greenhouse condition. Salinity stress was applied through irrigation water (0.36, 3 and 6 dS.m-1). The laboratory results revealed that Az63, Az69 and Az70 were the most effective isolates in terms of phosphate solubilization and potassium releasing and siderophore production. All isolates of Azotobacter grown very well in saline media with electrical conductivity of 10 dS.m-1 but some of them could grow in saline media with electrical conductivity of 20 dS.m-1. Az22 and Az66 isolates were more tolerant to salinity and they survive at electrical conductivity of 50 dS.m-1. The greenhouse results showed that dry weight of clusters increased 64 percent compared to the control when plant inoculated with Az69 isolate under normal irrigation water. Inoculation had no significant effect on growth indices when electrical conductivity of irrigation water was 3 or 6 dS.m-1. In this study, Az69 isolate was suggested for further studies.

کلیدواژه‌ها [English]

  • Bacteria
  • Electrical Conductivity
  • Growth promoter
  • Inoculation
  • Salinity
  1. اخگر، ع. 1387. جداسازی، شناسایی و بررسی باکتری­های ریزوسفری دارای توانایی تولید آنزیم ACC دآمیناز در کاهش اثرات تنش شوری بر رشد کلزا. رساله دکتری، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران. 158 صفحه.
  2. بی­نام، 1399. گزارش برآورد سطح و تولید محصولات زراعی در سال زراعی 98-97. وزارت جهاد کشاورزی، معاونت برنامه ریزی و اقتصادی، مرکز فناوری اطلاعات و ارتباطات.
  3. بی­نام، 1381. نقشه 1:1000000 منابع خاک و کاربری اراضی ایران. مؤسسه تحقیقات خاک و آب، تهران- ایران.
  4. خسروی, ه. 1398. واکنش ذرت به تلقیح با ازتوباکتر در شرایط تنش خشکی.پژوهش آب در کشاورزی (علوم خاک و آب), 33(1), 38-29.‎
  5. خسروی، ه. 1393. ازتوباکتر و نقش آن در مدیریت حاصخیزی خاک. نشریه مدیریت اراضی، 2(2):94-79.
  6. خسروی، ه.، ح. علیخانی و ب. یخچالی. 1387. بررسی اثر سویه­های ریزوبیوم دارای آنزیم ACC دآمیناز بر رشد گندم در شرایط تنش شوری. مجله تحقیقات آب و خاک ایران (مجله علوم کشاورزی ایران)، 39(1): 103-93.
  7. کبری ثقفی ک.، احمدی ج.، اصغرزاده ا.، رکنی زاده ح. و حسینی مزینانی م. 1398. جداسازی، شناسایی و بررسی ویژگیهای محرک رشدی سودوموناس­های فلورسنت از ریزوسفر درختان زیتون در خاک­های شور. نشریه زیست شناسی خاک، 7(1): 28-13.
  8. مؤمنی ع. 1388. پراکنش جغرافیایی و سطوح شوری منابع خاک ایران. مجله پژوهش­های خاک، 24(3): 215-203.
  9. Abd El-Ghany, T.M., Masrahi, Y.S., Mohamed, A., Abboud, A., Alawlaqi, M.M. and Elhussieny, A., 2015. Maize (Zea mays) growth and metabolic dynamics with plant growth-promoting rhizobacteria under salt stresses. J Plant Pathol Microb, 6(305), p.2.
  10. Afzal, A. and Bano, A., 2008. Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum). Int J Agric Biol, 10(1), pp.85-88.
  11. Ahmad, F., Ahmad, I. and Khan, M.S., 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological research, 163(2), pp.173-181.
  12. Asghar, H., Zahir, Z., Arshad, M. and Khaliq, A. 2002. Relationship between in vitro production of auxins by rhizobacteria and their growth-promoting activities in Brassica juncea Biology and Fertility of Soils, 35(4): 231-237.
  13. Bent, E., Tuzun, S., Chanway, C.P. & Enebak, S. (2001). Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Canadian Journal of Microbiology, 47(9): 793-800.
  14. Brown, M.E., & Walker, N., (1970). Indolyl-3-acetic acid formation by Azotobacter chroococcum. Plant Soil. 32(1), 250-253.
  15. Cardinale, M., Ratering, S., Suarez, C., Montoya, A.M.Z., Geissler-Plaum, R. and Schnell, S., 2015. Paradox of plant growth promotion potential of rhizobacteria and their actual promotion effect on growth of barley (Hordeum vulgare L.) under salt stress. Microbiological research, 181, pp.22-32.
  16. Chen, Y., Barak, P. (1982). Iron nutrition of plants in calcareous soils. Adv. Agron. 35, 217-240.
  17. Cornish, A.S., Page, W.J. (1998). The catecholate siderophores of Azotobacter vinelandii: Their affinity for iron and role in oxygen stress management. Microbiology, 144, 1747-1754.
  18. Deshwal, V.K. and Kumar, P., (2013). Effect of salinity on growth and PGPR activity of Pseudomonads. Journal of Academia and Industrial Research, 2(6), pp.353-356.
  19. Eshaghi, E., Nosrati, R., Owlia, P., Malboobi, M.A., Ghaseminejad, P. and Ganjali, M.R., 2019. Zinc solubilization characteristics of efficient siderophore-producing soil bacteria. Iranian Journal of Microbiology, 11(5), p.419.
  20. García, J.E., Maroniche, G., Creus, C., Suárez-Rodríguez, R., Ramirez-Trujillo, J.A. and Groppa, M.D., 2017. In vitro PGPR properties and osmotic tolerance of different Azospirillum native strains and their effects on growth of maize under drought stress. Microbiological Research, 202, pp.21-29
  21. Glick, B.R., 2012. Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012: 1–15.
  22. Hasanudin, H. 2003. Increasing of the nutrient and uptake availability of N and P and through corn yield of inoculation of Mycorrhiza and Azotobacter on ultisol organic matter. Journal of Agriculture Sciences of Indonesia, 5(1): 83 – 89.
  23. Jarak, M., Mrkovački, N., Bjelić, D., Joscaron, D., Hajnal-Jafari, T. and Stamenov, D., 2012. Effects of plant growth promoting rhizobacteria on maize in greenhouse and field trial. African Journal of Microbiology Research, 6(27), pp.5683-5690.
  24. Jiang, H., Dong, H., Zhang, G., Yu, B., Chapman, L.R. & Fields, M.W. 2006. Microbial diversity in water and sediment of Lake Chaka, an Athalassohaline lake in northwestern China.  Appl. Environ. Microb. 72(6), 3832-3845.
  25. Kumar, V. and N. Narula. 1999. Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chroococcum Biology and Fertility of Soils, 28: 201-305.
  26. Kundu, B.S., & Gaur, A.C., (1980). Establishment of nitrogen fixing and phosphate solubilizing bacteria in the rhizosphere and their effect on yield and nutrient uptake of the wheat Plant Soil. 57, 223–230.
  27. Kuykendall, L.D. 2015. Rhizobilaes. Bergey's Manual of Systematics of Archaea and Bacteria, Published by John Wiley & Sons, Inc, in Association with Bergey's Manual Trust.17:1-33.
  28. Last R.L., Bissinger, P.H., Mahoney, D.J., Radwanski, E.R., & Fink, G.R. (1991). Tryptophan mutants in Arabidopsis – the consequences of duplicated tryptophan synthase beta genes. Plant. Cell. 3 (4), 345–358.
  29. Meena, V.S., Maurya, B.R., Verma, J.P., Aeron, A., Kumar, A., Kim, K. & Bajpai, V.K. (2015). Potassium solubilizing rhizobacteria (KSR): Isolation, identification, and K-release dynamics from waste mica. Ecological Engineering, 81: 340-347.
  30. Mishustin, E., Smironova, G. & Lokhmacheva, R. (1981). The decomposition of silicates by microorganisms and the use of silicate bacteria as bacterial fertilizers. Biology Bulletin Academy of Sciences of the USSR (USA).
  31. Munns, R., & Tester, M. (2008) Mechanisms of salinity tolerance. Annu RevPlant Biol 59:651–81. doi:10.1146/annurev.arplant.59.032607.092911.
  32. Naseri, R., Moghadam, A., Darabi, F., Hatami, A. and Tahmasebei, G.R. 2013. The Effect of deficit irrigation and Azotobacter chroococcum and Azospirillum brasilense on grain yield, yield components of maize (SC 704) as a second cropping in western Iran. Bull. Env. Pharmacol. Life Sci, 2(10): 104-112.
  33. Prabhavati, & Mallalah, K.V. (2009). Effect of salt concentration on indole acetic acid production byRhizobium sp. nodulating horse gram. International Journal of Agricultural Sciences.5(1): 46-49.
  34. Schwyn, B., & Neilands, J.B. (1987). Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160, 47-56.
  35. Sheng, X.F. & He, L.Y. (2006). Solubilization of potassium-bearing minerals by a wild-type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Canadian Journal of Microbiology, 52(1): 66-72.
  36. Sperber, J.I. (1958). The incidence of apatite-solubilizing organisms in the rhizosphere and soil. Crop and Pasture Science, 9(6): 778-781.
  37. Tindale, A.E., Mehrotra, M., Ottem, D., & Page, W.J. (2000). Dual regulation of catecholate siderophore biosynthesis in Azotobacter vinelandii by iron and oxidative stress. Microbiology, 146, 1617-1626.
  38. Villa, J.A., Ray, E.E., & Barney, B.M., (2014). Azotobacter vinelandii siderophore can provide nitrogen to support the culture of the green algae Neochloris oleoabundans and Scenedesmus BA032. FEMS Microbiol. Lett.351(1), 70-77.
  39. Yan N., Marschner P., Cao W., Zuo C. & Qin W. (2015) Influence of salinity and water content on soil microorganisms. International Soil and Water Conservation Research, 3: 316–323.
  40. Zhang, C. & Kong, F. (2014). Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Applied Soil Ecology, 82: 18-25.